|
The nervous system is the part of an animal's body that coordinates its voluntary and involuntary actions and transmits signals to and from different parts of its body. Nervous tissue first arose in wormlike organisms about 550 to 600 million years ago. In vertebrate species it consists of two main parts, the central nervous system (CNS) and the peripheral nervous system (PNS). The CNS contains the brain and spinal cord. The PNS consists mainly of nerves, which are enclosed bundles of the long fibers or axons, that connect the CNS to every other part of the body. Nerves that transmit signals from the brain are called ''motor'' or ''efferent'' nerves, while those nerves that transmit information from the body to the CNS are called ''sensory'' or ''afferent''. Most nerves serve both functions and are called ''mixed'' nerves. The PNS is divided into a) somatic and b) autonomic nervous system, and c) the enteric nervous system. Somatic nerves mediate voluntary movement. The autonomic nervous system is further subdivided into the sympathetic and the parasympathetic nervous systems. The sympathetic nervous system is activated in cases of emergencies to mobilize energy, while the parasympathetic nervous system is activated when organisms are in a relaxed state. The enteric nervous system functions to control the gastrointestinal system. Both autonomic and enteric nervous systems function involuntarily. Nerves that exit from the cranium are called cranial nerves while those exiting from the spinal cord are called spinal nerves. At the cellular level, the nervous system is defined by the presence of a special type of cell, called the neuron, also known as a "nerve cell". Neurons have special structures that allow them to send signals rapidly and precisely to other cells. They send these signals in the form of electrochemical waves traveling along thin fibers called axons, which cause chemicals called neurotransmitters to be released at junctions called synapses. A cell that receives a synaptic signal from a neuron may be excited, inhibited, or otherwise modulated. The connections between neurons can form neural circuits and also neural networks that generate an organism's perception of the world and determine its behavior. Along with neurons, the nervous system contains other specialized cells called glial cells (or simply glia), which provide structural and metabolic support. Nervous systems are found in most multicellular animals, but vary greatly in complexity.〔 The only multicellular animals that have no nervous system at all are sponges, placozoans, and mesozoans, which have very simple body plans. The nervous systems of the radially symmetric organisms ctenophores (comb jellies) and cnidarians (which include anemones, hydras, corals and jellyfish) consist of a diffuse nerve net. All other animal species, with the exception of a few types of worm, have a nervous system containing a brain, a central cord (or two cords running in parallel), and nerves radiating from the brain and central cord. The size of the nervous system ranges from a few hundred cells in the simplest worms, to around 100 billion cells in humans. The central nervous system functions to send signals from one cell to others, or from one part of the body to others and to receive feedback. Malfunction of the nervous system can occur as a result of genetic defects, physical damage due to trauma or toxicity, infection or simply of ageing. The medical specialty of neurology studies disorders of the nervous system and looks for interventions that can prevent or treat them. In the peripheral nervous system, the most common problem is the failure of nerve conduction, which can be due to different causes including diabetic neuropathy and demyelinating disorders such as multiple sclerosis and amyotrophic lateral sclerosis. Neuroscience is the field of science that focuses on the study of the nervous system. ==Structure== The nervous system derives its name from nerves, which are cylindrical bundles of fibers (the axons of neurons), that emanate from the brain and spinal cord, and branch repeatedly to innervate every part of the body.〔 Nerves are large enough to have been recognized by the ancient Egyptians, Greeks, and Romans, but their internal structure was not understood until it became possible to examine them using a microscope.〔Finger, pp. 43–50〕 "It is difficult to believe that until approximately year 1900 it was not known that neurons are the basic units of the brain (Santiago Ramón y Cajal|). Equally surprising is the fact that the concept of chemical transmission in the brain was not known until around 1930 (Henry Hallett Dale ) and (Otto Loewi ). We began to understand the basic electrical phenomenon that neurons use in order to communicate among themselves, the action potential, in the decade of 1950 (Alan Lloyd Hodgkin, Huxley Andrew Huxley and John Eccles). It was in the decade of 1960 that we became aware of how basic neuronal networks code stimuli and thus basic concepts are possible (David H. Hubel, and Torsten Wiesel). The molecular revolution swept across US universities in the decade of 1980. It was in the decade of 1990 that molecular mechanisms of behavioral phenomena became widely known (Eric Richard Kandel)."〔Nikoletseas Michael M. (2010) Behavioral and Neural Plasticity. ISBN 978-1453789452〕 A microscopic examination shows that nerves consist primarily of axons, along with different membranes that wrap around them and segregate them into fascicles. The neurons that give rise to nerves do not lie entirely within the nerves themselves—their cell bodies reside within the brain, spinal cord, or peripheral ganglia.〔 All animals more advanced than sponges have nervous systems. However, even sponges, unicellular animals, and non-animals such as slime molds have cell-to-cell signalling mechanisms that are precursors to those of neurons.〔 In radially symmetric animals such as the jellyfish and hydra, the nervous system consists of a nerve net, a diffuse network of isolated cells.〔 In bilaterian animals, which make up the great majority of existing species, the nervous system has a common structure that originated early in the Ediacaran period, over 550 million years ago.〔 抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「nervous system」の詳細全文を読む スポンサード リンク
|